Sunday, October 30, 2011

Pulling Ahead


 

Today's blog is an early celebration of Halloween and homage to the forces of motion. Since vampires receive an excessive amount of attention in society, Snoopy decided that a mummy costume would be the more unique choice. As seen in the picture on the top left corner, he has a pencil attached to him. The tension of the string causes the pencil's state of motion to be affected by Snoopy's movement. If Snoopy remained stationary, no unbalanced force would act on the pencil to change its state of motion. The picture in the center indicates how Snoopy's motion causes the pencil to move with him at the same velocity. In the picture on the top right corner, Snoopy's fall from the table also makes the pencil travel towards the ground. In essence, when Snoopy stops moving, the pencil also stops.

Sunday, October 23, 2011

Just Leaning


A force is a vector that causes the acceleration of an object. When at least one pair of forces is balanced, no acceleration occurs. In this case, I took a picture of Snoopy, who is already wearing his costume for Halloween, leaning against a wall. Although the human mind does not perceive this phenomenon at once, four forces are acting on Snoopy. One of the forces is his weight, which pulls him to the ground. Also, a normal force equal and opposite to the force of his weight also acts on Snoopy. The friction of the ground on Snoopy is another force. Finally, the wall also exerts a force on Snoopy because he would otherwise fall towards where the wall is placed.

Sunday, October 16, 2011

Resting and Moving


To anyone who is actually reading this blog, aloha. I am not sure if today begins the start of new blog posts for the class but I would rather not risk losing points for a late entry again. The new unit of the quarter involves a different notion of movement. In this instance, the focus is on forces that can influence motion. In order to demonstrate this common phenomenon, I took a picture of this calculator. The blurriness of this picture is due to the fact that I pushed it across the table. According to Newton's first law, an object that is in a state of rest will remain unmoved unless an unbalanced force acts upon it. The calculator only moved because my hand exerted force on it. Once I no longer had it in my grasp, it returned to its initial state.

Thursday, October 6, 2011

Bye for Now

This will mark my last post for the quarter. In this picture, I have my mother reading my blog for extra credit. I wish that a note could suffice because her handwriting is not very similar to my own but I try to get extra points when I can. I appreciate that she helped me for this instance. Her opinion about my blog was fairly positive. I am quite ill at the moment so my camera work is mediocre at best. If I could crop out the background, I would. Then again, I suppose that this represents reality, which cannot be contained.

Sunday, October 2, 2011

Crossing Streets


In the world of two-dimensional kinematics and vectors, one must always take into count both how far something is traveling as well as how, or what direction, the object is moving. Walking from one place to another is a definite example. Normally, one cannot travel in a continuously straight line in order to go somewhere. Instead, one often has to cross from one street to the next. In this instance, I drew the simplified version of my path to a restaurant. Starting from the "x", I walk north for 0.3 meters, walk 0.07 meters to the west, walk north for 0.06 meters, walk east for 0.07 meters, and then continue north for 0.12 meters in order to reach my destination, which is indicated as a rectangle on this diagram. Based on a two-dimensional coordinate system, I traveled 0.48 meters positively on the y-axis. Since I technically returned to my original distance on the x-axis, my horizontal displacement was 0 meters. However, these calculations do not demonstrate how I actually traveled to the restaurant. I had to change directions because I had to walk across areas where pedestrians could cross.